Understanding machine learning: from theory to algorithms
EM000008579335
Machine generated contents note: 1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity tradeoff; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra
Tags
algorithms computers / computer vision & pattern recognition machine learning handapparate
Queries
Handapparate catalog - mediathek catalog - HGK catalog - Handapparate catalog - HGKplus
Full spec
- CallNumber
- 408.2 SHAL
- DateAdded
- 2016-09-20T14:51:33Z
- DateModified
- 2016-09-20T14:52:15Z
- ISBN
- 978-1-107-05713-5
- Key
- EK5IITUI
- LibraryCatalog
- Mediathek der Künste
- NumPages
- 397
- Publisher
- Cambridge University Press
- ShortTitle
- Understanding machine learning